

Max. Marks: 360

Date: 29.08.2022

PART TEST : PHYSICS NEET 24 Topic: Projectile Motion

- 1. A ball is thrown at an angle θ with the horizontal. Its horizontal range is 60 m and time of flight is 3s. What is the horizontal component of its velocity of projection?
 - (a) 20 m/s (b) 30 m/s (c) 15 m/s (d) 10 m/s
- 2. The maximum vertical height to which a boy can throw a ball is 40 m. What is the maximum possible horizontal distance to which he can throw the ball ?
 - (a) 20 m (b) 40 m (c) 60 m (d) 80 m
- 3. A ball is projected with a velocity v making an angle θ with the horizontal. If its horizontal range is expressed as $R = \frac{\sqrt{3}v^2}{2g}$, what is the value of the angle of projection?
 - (a) 15° (b) 20° (c) 45° (d) 30°
- 4. For angles of projection of projectile at angles $(45^{\circ} \theta)$ and $(45^{\circ} + \theta)$, the horizontal ranges described by the projectile are in the ratio of
 - (a) 1:1 (b) 1:2 (c) 2:1 (d) 2:3
- 5. A projectile is projected with initial velocity 6m/s in horizontal direction and 8m/s in vertical direction. If g = 10 m/s², then the horizontal range is
 - (a) 9.6 m (b) 4.8 m (c) 19.2 m (d) 2.4 m

- 6. For a body projected at angle of 45° to the horizontal, the horizontal range (R) and maximum height (H) are related as
 - (a) R = 16H (b) R = 8H (c) R = 4H (d) R = 2H
- 7. Two projectiles A and B thrown with speeds in the ratio $1:\sqrt{2}$ acquired the same maximum heights. If A is thrown at an angle of 45° with the horizontal, the angle of projection of B will be
 - (a) 0° (b) 60° (c) 30° (d) 45°
- 8. A ball is projected with the same velocity but at different angles with the horizontal. For which angle of projection from the following the height reached by the ball is maximum ?
 - (a) 30° (b) 45° (c) 60° (d) 80°
- 9. A water fountain on the ground sprinkles water all around it. If the speed of water coming out of the fountain is v, the total maximum area around the fountain that gets wet is
 - (a) $\pi \frac{v^2}{g}$ (b) $\pi \frac{v^4}{g^2}$ (c) $\frac{\pi}{2} \frac{v^4}{g^2}$ (d) $\pi \frac{v^2}{g^2}$

10. A body is thrown with a velocity of 10 m/s making an angle of 30° with the horizontal. It will hit the ground after a time-

- (a) 3 s (b) 2 s (c) 1.5 s (d) 1 s
- 11. The angle of projection of a body is 15°. The other angle for which the range is the same as the first one is equal to-
 - (a) 30° (b) 45° (c) 60° (d) 75°
- 12. If four balls A, B, C, D are projected with same speed at angles of 15°, 30°, 45° and 60° with the horizontal respectively, the two balls which will fall at the same place will be-

(a)	A and B	(b)	A and D		(c)	B and D	(d)	A and C	
			a .	-		-			

- 13. Two balls are projected from the same point in direction inclined at 60° and 30° to the horizontal. If they attain the same maximum height, what is the ratio of their velocities of projection ?
 - (a) $1:\sqrt{3}$ (b) $\sqrt{3}:1$ (c) 1:1 (d) 1:2

14. A stone is projected with speed u at an angle q with the horizontal from a high tower and lands on ground. Then :

(i) Range of stone =
$$\frac{u^2 \sin 2\theta}{g}$$
 (ii) Time of flight = $\frac{2u \sin \theta}{g}$

Select correct one -

- (a) Only statement (i) is correct
 (b) Only statement (ii) is correct
 (c) Both (i) and (ii) are correct
 (d) Neither (i) nor (ii) is correct
- 15. Three particles, A, B and C are projected from the same point with same initial speeds making angles 30° , 45° and 60° respectively with the horizontal. Which of the following statement is correct?
 - (a) A, B and C have equal ranges
 - (b) ranges of A and C are equal and less than that of B
 - (c) ranges of A and C are equal and greater than that of B
 - (d) A, B and C have equal ranges
- 16. A projectile thrown with a speed v at an angle q has a Height H on the surface of the earth. For same v and q, its height on the surface of moon will be- $(g_{moon} = g_{earth} / 6)$
 - (a) H/6 (b) 6H (c) H/36 (d) 36H
- 17. If a man wants to hit a target, he should point his rifle
 - (a) higher than the target (b) lower than the target
 - (c) in the direction of the target (d) nothing can be said

- 18. The horizontal range covered by projectile is proportional to
 - (a) its velocity
 (b) square of its velocity
 (c) sine of the angle of projection
 (d) square of the sine of the angle of projection
- 19. The horizontal range for projectile is given by

(a)
$$\frac{u^2 \sin^2 \theta}{g}$$
 (b) $\frac{u^2 \sin 2\theta}{g}$ (c) $\frac{u^2 \sin 2\theta}{2g}$ (d) $\frac{u^2 \cos 2\theta}{g}$

- 20. The maximum vertical height attained by a projectile is
 - (a) $\frac{U^2 \sin \theta}{g}$ (b) $\frac{U^2 \sin 2\theta}{g}$ (c) $\frac{U^2 \sin 2\theta}{2g}$ (d) $\frac{U^2 \sin^2 \theta}{2g}$
- 21. A ball is thrown at an angle θ with the vertical. Its horizontal range is 60 m and time of flight is 3s. What is the horizontal component of its velocity of projection?
 - (a) 20 m/s (b) 30 m/s (c) 15 m/s (d) 10 m/s
- 22. The maximum vertical height to which a boy can throw a ball is 40 m. What is the maximum possible horizontal distance to which he can throw the ball ?
 - (a) 20 m (b) 40 m (c) 60 m (d) 80 m
- 23. A ball is projected with a velocity v making an angle θ with the horizontal. If its horizontal range is expressed as $R = v^2/2g$, what is the value of the angle of projection?
 - (a) 15° (b) 20° (c) 45° (d) 30°
- 24. For angles of projection of projectile at angles $(25^{\circ} \theta)$ and $(65^{\circ} + \theta)$, the horizontal ranges described by the projectile are in the ratio of
 - (a) 1:1 (b) 1:2 (c) 2:1 (d) 2:3

A projectile is projected with initial velocity 60m/s in horizontal direction and 80m/s in vertical direction. If g =25. 10 m/s^2 , then the horizontal range is 960 m 480 m (a) (b) (c) 1920 m (d) 240 m For a body projected at angle of 45° to the horizontal, the horizontal range (R) and maximum height (H) are 26. related as (a) R = 16H(b) R = 8H(c) R = 4H(d) R = 2HTwo projectiles A and B thrown with speeds in the ratio $1:\sqrt{2}$ acquired the same maximum heights. If A is 27. thrown at an angle of 45° with the horizontal, the angle of projection of B will be 0° 60° 30° 45° (a) (b) (c) (d) A ball is projected with the same velocity but at different angles with the horizontal. For which angle of 28. projection from the following the height reached by the ball is maximum? 45° 65° 30° 60° (a) (b) (c) (d) A ball is projected with the same velocity but at different angles with the horizontal. For which angle of 29. projection from the following the range reached by the ball is maximum? (a) 30° (b) 40° (c) 55° (d) 65° A body is thrown with a velocity of 40 m/s making an angle of 30° with the horizontal. It will hit the ground 30. after a time 3 s 1.5 s (a) (b) 2 s (c) (d) 4 s The angle of projection of a body is 22.5°. The other angle for which the range is the same as the first one is 31. equal to 30° 77.5° 62.5° 67.5° (a) (b) (c) (d) **Space for Rough Work**

- 32. If four balls A, B, C, D are projected with same speed at angles of 15°, 20°, 55° and 70° with the horizontal respectively, the two balls which will fall at the same place will be
 - (a) A and B (b) A and D (c) B and D (d) A and C
- 33. Two balls are projected from the same point in direction inclined at 60° and 30° to the horizontal. If they attain the same maximum height, what is the ratio of their time of flight?
 - (a) $1:\sqrt{3}$ (b) $\sqrt{3}:1$ (c) 1:1 (d) 1:2
- 34. A body is projected at an angle θ with horizontal. Another body is projected with the same velocity at an angle θ with the vertical. The ratio of the range is-
 - (a) 1:1 (b) $\tan^2 \theta$:1 (c) $\tan \theta$:1 (d) $\tan 2\theta$:1
- 35. Three particles, A, B and C are projected from the same point with same initial speeds making angles 15°, 45° and 75° respectively with the horizontal. Which of the following statement is correct ?
 - (a) A, B and C have equal ranges
 - (b) ranges of A and C are equal and less than that of B
 - (c) ranges of A and C are equal and greater than that of B
 - (d) A, B and C have equal ranges
- 36. A projectile thrown with a speed v at an angle θ has a Height H on the surface of the earth. If the speed is doubled and angle θ is kept same, its height on the surface of moon will be- $(g_{moon} = g_{earth} / 6)$
 - (a) 24H (b) 6H (c) H/36 (d) 36H
- 37. If a man wants to hit a target, he should point his rifle
 - (a) higher than the target (b) lower than the target
 - (c) in the direction of the target (d) nothing can be said

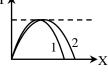
- 38. The time of flight covered by projectile is proportional to
 - (c) cosine of the angle of projection (d) square of the sine of the angle of projection

(b)

square of its velocity

 $U^2/4g$

 $u_1 < u_2$


(d)

- 39. The vertical maximum height for projectile is given by (a) U^2/g (b) $U^2/2g$ (c) $2U^2/g$
- 40. The range attained by a projectile is

its velocity

(a)

- (a) $\frac{U^2 \sin \theta}{g}$ (b) $\frac{U^2 \sin 2\theta}{g}$ (c) $\frac{U^2 \sin 2\theta}{2g}$ (d) $\frac{U^2 \sin^2 \theta}{2g}$
- 41. If a projectile thrown with a speed v at an angle 45° to the horizontal attains a maximum height of 62m, its range will be -
 - (a) 31 m (b) 248 m (c) 124 m (d) 62 m
- 42. A body is projected at 30° angle with the horizontal with velocity 30 ms⁻¹. What is the angle with the horizontal after 1.5 s? (Take $g = 10 \text{ m s}^{-2}$)
 - (a) 0° (b) 30° (c) 60° (d) 90°
- 43. Trajectories of two projectiles are shown in the figure. Let T_1 and T_2 be the time of flights and u_1 and u_2 be their speeds of projection. Then $Y \uparrow$

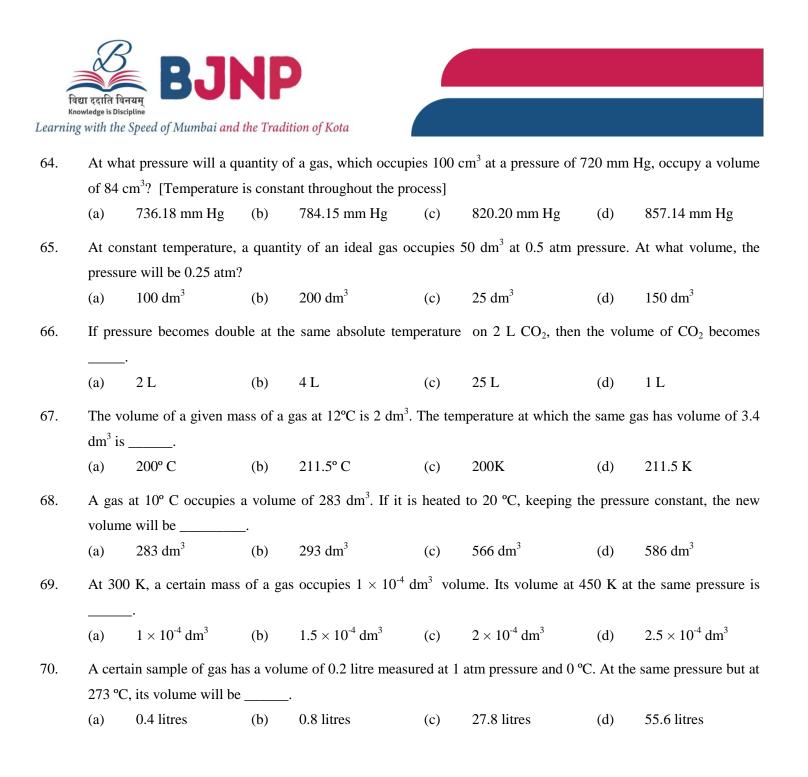
(a) $T_2 > T_1$ (b) $T_1 > T_2$ (c) $u_1 > u_2$ (d)

Space	for	Rough	Work

- 44. A body is projected at an angle of 30° with the horizontal with momentum p. At its highest point, the momentum is -
 - (a) p (b) $\frac{p}{2}$ (c) $\frac{\sqrt{3}}{2}$ p (d) $\frac{2}{\sqrt{3}}$ p
- 45. Two projectiles are thrown with the same initial velocity at angles α and $(90^{\circ}-\alpha)$ with the horizontal. The maximum heights attained by them are h_1 and h_2 respectively. Then $\frac{h_1}{h_2}$ is equal to -
 - (a) $\sin^2 \alpha$ (b) $\cos^2 \alpha$ (c) $\tan^2 \alpha$ (d) 1

Max Marks:

Date: 29.08.2022

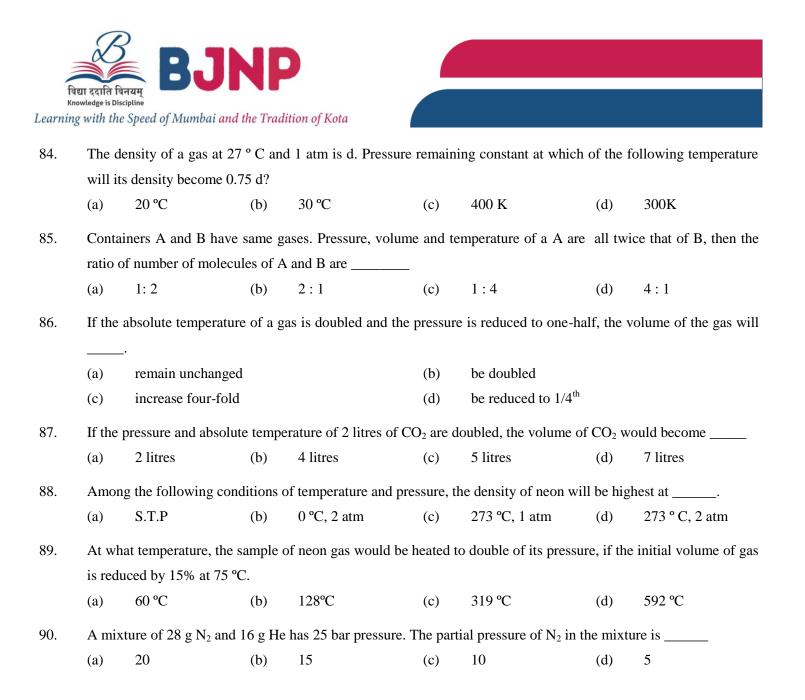

CHEMISTRY: PART TEST Topic: Gaseous State

46.	Whic	h property is kept c	onstant ii	n verification of Char	les' law	?		
	(a)	Pressure	(b)	Volume	(c)	Temperature	(d)	Both (B) and (C)
47.	Whic	h of the following e	xpressio	n at constant pressure	e represe	ents Charles' law for	a given n	nass of gas?
	(a)	$V \approx \frac{1}{T}$	(b)	$V \propto \frac{1}{T^2}$	(c)	V œ T	(d)	V œ d
48.	At	, the volume	of a give	en mass of gas is do	ouble as	compared to its vol	ume at (0° C. Pressure is kept
	const	ant throughout.						
	(a)	-273.15°C	(b)	0°C	(c)	100 °C	(d)	273.15°C
49.	The g	raph of pressure vs	temperat	ture according to Gay	/ Lussac	's law is		
	(a)	straight line para	llel to X	axis				
	(b)	straight line para	llel to Y	axis				
	(c)	straight line pass	ing throu	ıgh origin				
	(d)	straight line with	negative	e slope				
50.	Wher	the pressure of 5 I	$_{2}$ of N ₂ is	s doubled and its tem	perature	is raised from 300 H	K to 600	K, the final volume of
		as would be			1			
	(a)	5 L	(b)	10L	(c)	15 L	(d)	20 L
51.	The v	olume occupied by	1 mole o	of a gas when pressur	e is 1 atı	m and tempreture is 2	273.15 K	is
	(a)	2.24 L	(b)	22.4 L	(c)	224 L	(d)	22400 L

Kne	EII ददाति fo owledge is Di g with th												
52.	Which of the following law explains scuba diving ?												
	(a)	Boyle's law	(b)	Charles'law	(c)	Gay Lussac's law	(d)	Avogadro law					
53.		ir balloons float in of	air becau		ty of the ai	r inside the balloon. T	This can	be explained with the					
	(a)	Boyle's law	(b)	Charles'law	(c)	Gay Lussac's law	(d)	Avogadro law					
54.	•	pressure in the auto	mobile ty	res changes during	hot summ	er or winter season. T	his can	be explained with the					
	(a)	Boyle's law	(b)	Charles'law	(c)	Gay Lussac's law	(d)	Avogadro law					
55.	For n	moles of an ideal g	gas, the ic	leal equation may b	e written a	.s							
	(a)	PT/n = RV	(b)	$PV = (RT)^2$	(c)	PV = nRT	(d)	PV = RT/n					
56.	Selec	t the CORRECT st	atement.	In the gas equation	PV = nRT	Γ,							
	(a)	n is the number	of molec	ules of a gas									
	(b)	V denotes volum	ne of one	mole of the gas									
	(c)	n moles of the g	as have a	volume V									
	(d)	P is the pressure	of the ga	as when only one m	ole of gas	is present.							
57.	For a	n ideal gas, number	of mole	s per litre in terms o	of its pressu	ure P, gas constant R a	and tem	perature T is					
	(a)	PT/R	(b)	PRT	(c)	P/RT	(d)	RT/P					
58.	COR	RECT value of gas	constant	'R' is									
	(a)	8.21 cal K ⁻¹ mol	-1		(b)	8.314 J K ⁻¹ mol ⁻¹							
	(c)	8.21 L atm K^{-1} r	nol ⁻¹		(d)	1.987 J K ⁻¹ mol ⁻¹							

K	वेद्या ददाति f	scipline						
Learnin	0	e Speed of Mumbai <mark>a</mark>		U C				
59.		unit of pressure is		that of volume is o			-	
	(a)	atm K dm ⁻³ mo	l ⁻¹		(b)	atm dm ³ K ⁻¹ m	ol^{-1}	
	(c)	atm K ⁻¹ mol ⁻¹			(d)	atm dm ³ K ⁻¹		
60.	The t	emperature at which	ch the volu	ume and pressure	of 28 g N_2 b	becomes 10 dm ³ ar	nd 2.46 atm	respectively is
	(a)	273 K	(b)	299.63 K	(c)	373 K	(d)	399.65 K
61.	The t mixtu	-	mixture o	f two or more nor	n-reactive g	ases is the	of the i	ndividual gases in the
	(a)	sum of the parti	al pressur	es				
	(b)	product of the p	-					
	(c)	sum of the pure	•					
	(d)	product of the p	•					
62.	For a	certain amount of	an ideal g	as at constant tem	perature.			
	(a)	volume always	-		·			
	(b)	pressure always						
	(c)	-		olume remains co	nstant.			
	(d)			volume always ren		ant.		
63.	Whic	h of the following	graphs rep	present Boyle's la	w?			
	(a)		(b)	PV P	- → (c)	PV PV	→ (d)	PV PV

Space	for	Rough	Work



71.	400 c	cm ³ of oxygen ga	as at 27 °C	was cooled to -3	°C without	change in pressure	e. The contr	raction in volume will
	be	·						
	(a)	30 cm^3	(b)	40 cm^3	(c)	44.4 cm^3	(d)	360 cm^3
72.	At w	hat temperature i	n the Celsi	us scale, V (volur	me) of a cer	tain mass of a gas	at 27°C wi	ll be doubled keeping
	he pr	essure constant ?						
	(a)	54 °C	(b)	327 °C	(c)	427 °C	(d)	527° C
73.	At a	constant pressure	, what shou	ald be the percenta	ige increase	in the temperature	e in Kelvin	for a 10% increase in
	volur	ne of a given mas	ss of a gas '	?				
	(a)	5%	(b)	10%	(c)	20%	(d)	50%
74.	10 g	of gas at atmospł	neric pressu	re is cooled from	273 °C to 0	°C keeping the vo	lume consta	ant, its pressure would
	becon	me						
	(a)	¹⁄₂ atm	(b)	1/273 atm	(c)	2 atm	(d)	273 atm
75.	A ve	essel contains one	e mole of	O ₂ gas (molar ma	ass 32) at a	temperature T. T	The pressure	e of the gas is P. An
	ident	ical vessel contai	ning one m	ole of He gas (mo	lar mass 4)	at a temperature 2'	T has a pres	ssure of
	(a)	P/8	(b)	Р	(c)	2P	(d)	8P
76.	Whic	ch of the followin	g represent	s the Avogadro nu	umber ?			
	(a)	Number of mo	olecules pre	esent in 1 L of a ga	as at S.T.P.			
	(b)	Number of mo	olecules pre	esent in 22.4 L of a	a gas at S.T.	P.		
	(c)	Number of mo	olecules pre	esent in 1 dm ³ of a	gas at 298	K and 1 atm.		
	(d)	Number of mo	olecules pre	esent in one mole of	of a gas at a	ny temperature and	d pressure.	

- 77. Hydrogen and argon are kept in two separate but identical vessels at constant temperature and pressure, then which of the following is CORRECT?
 - (a) Both contain same number of atoms.
 - (b) The number of atoms of argon is half than that of hydrogen
 - (c) The number of atoms of argon is double than that of hydrogen
 - (d) The number of atom of argon is $1/4^{th}$ than that of hydrogen.
- 78. Five grams each of the following gases at 87 °C and 750 mm pressure are taken. Which of them will have the least volume ?
 - (a) HF (b) HCl (c) HBr (d) HI
- 79. If the volume of 2 moles of an ideal gas at 540K is 44.8 litres then its pressure will be _____.
 - (a) 1 atmosphere (b) 2 atmosphere (c) 3 atmosphere (d) 4 atmosphere
- 80. 2 gm of O₂ at 27 ° C and 760 mm of Hg pressure has volume _____.
 (a) 1.5 L
 (b) 2.8 L
 (c) 11.2 L
 (d) 22.4 L
- 81. 16 g of oxygen and 3 g of hydrogen are mixed and kept at 760 mm of Hg pressure and 0 °C. The total volume occupied by the mixture will be nearly _____
 - (a) 22.4 litres (b) 33.6 litres (c) 448 litres (d) 44800 mL
- 82. In an experiment during the analysis of a carbon compound, 145 L of H₂ was collected at 760 mm of Hg pressure and 27 °C temperature. The mass of H₂ is near _____
 - (a) 6 g (b) 10 g (c) 12 g (d) 24 g
- 83. Densities of two gases are in the ratio 1:2 and their temperatures are in the ratio 2:1, then the ratio of their respective pressure is _____
 - (a) 1:1 (b) 1:2 (c) 2:1 (d) 4:1

Max. Marks: 360

Date: 29.08.2022

PART TEST: PHYSICS NEET 24 ANSWER KEY Topic: Projectile Motion

1.	(a)	2.	(d)	3.	(d)	4.	(a)	5.	(a)
6.	(c)	7.	(c)	8.	(d)	9.	(b)	10.	(d)
11.	(d)	12.	(c)	13.	(a)	14.	(d)	15.	(b)
16.	(b)	17.	(a)	18.	(b)	19.	(b)	20.	(d)
21.	(a)	22.	(d)	23.	(a)	24.	(a)	25.	(a)
26.	(c)	27.	(c)	28.	(d)	29.	(b)	30.	(d)
31.	(d)	32.	(c)	33.	(c)	34.	(a)	35.	(b)
36.	(a)	37.	(a)	38.	(a)	39.	(b)	40.	(b)
41.	(b)	42.	(a)	43.	(d)	44.	(c)	45.	(c)

CHEMISTRY: PART TEST ANSWER KEY Topic: Gaseous State

46.	(a)	47.	(c)	48.	(d)	49.	(c)	50.	(a)
51.	(b)	52.	(a)	53.	(b)	54.	(c)	55.	(c)
56.	(c)	57.	(c)	58.	(b)	59.	(b)	60.	(b)
61.	(a)	62.	(c)	63.	(b)	64.	(d)	65.	(a)
66.	(d)	67.	(b)	68.	(b)	69.	(b)	70.	(a)
71.	(b)	72.	(b)	73.	(b)	74.	(a)	75.	(c)
76.	(b)	77.	(b)	78.	(d)	79.	(b)	80.	(a)
81.	(d)	82.	(c)	83.	(a)	84.	(c)	85.	(b)
86.	(c)	87.	(a)	88.	(b)	89.	(c)	90.	(d)